
开发技术:关于变量、移动以及含义(4) PDF转换可能丢失图片

或格式，建议阅读原文

https://www.100test.com/kao_ti2020/143/2021_2022__E5_BC_80_

E5_8F_91_E6_8A_80_E6_c102_143239.htm i will assume in my

answer that your question refers to server-side-only code that needs

to traverse a cursors result set. an entirely different set of

considerations comes into play if you are talking about transferring

data from the server to a user interface, such as a web page, and

allowing that front-end environment to flexibly move through result

sets. oracle does not currently support bidirectional access to cursor

result sets (aka scrollable cursors) through a pl/sql interface. you

might well find, however, that you can achieve the desired effect with

a combination of the following: multiple queries (each with different

order by clauses that correspond to the different ways you need to

traverse the result set). analytic functions: as the oracle database sql

reference states, "analytic functions compute an aggregate value

based on a group of rows. they differ from aggregate functions in that

they return multiple rows for each group. the group of rows is called

a window and is defined by the analytic_clause. for each row, a

sliding window of rows is defined. the window determines the range

of rows used to perform the calculations for the current row. . . ." for

tables with a relatively small number of rows, the use of multiple

queries may yield a satisfactory implementation. if, on the other

hand, your result set is very large, you may run into some

performance issues. in addition, you may still not be able to reference

arbitrary rows within the result set as desired. fortunately, you can

achieve the desired effect of a bidirectional cursor rather easily by

caching the result in a pl/sql collection. once the data has been

moved into the cache, you can move back and forth through the

result set, compare rows, and so on, with complete freedom and a

high degree of efficiency. i will demonstrate how you can build and

move through such a cache. recall that pl/sql program data consumes

program global area (pga) memory, distinct from the system global

area (sga), and there is a separate pga for each session connected to

an oracle instance. with large result sets, you are going to be

manipulating lots of data and the pga will require lots of memory for

the collection. this technique of building and moving through a

pl/sql collection cache will make the most sense under the following

circumstances: you are running this program for a small number of

simultaneous sessions, or it is a single batch process. you must have

sufficient memory to hold the cache(s) you will create to emulate

bidirectional cursors. the data in the result set is static (or you want to

ignore any changes that occur once your program starts). once you

have copied your result set to your collection-based cache, any

changes to the tables that contributed to your result set will not be

reflected in the cacheeven if those changes are committed in some

other session. this is a "one-off," static copy of the table (or whatever

result set you have defined with your query). listing 5 offers an

example of bidirectional cursor processing built around a collection

of records with the same structure (and data) as the jokes table

defined below: create table jokes (joke_id integer, title

varchar2(100), text varchar2(4000))/ 100Test 下载频道开通，各

类考试题目直接下载。详细请访问 www.100test.com

