LinuxD O OODOOooooooo pPODFOOOOODOOOO
Jodoooood
https.//www.100test.com/kao_ti2020/144/2021 2022 Linux_E6 93
8D E4 BD cl03 1444htmO 000000000 OOOn
Jododododododooooooodooodo
Jododododododouooooodooodo
Jododododododouooooodooodo
Do00000000o0U0OUdddevice witeD OO OOOO
Jodododododddmodemb O
JodocPul OO0 0ODOODODODODOOOO
Jododododododouooooodouoodo
OO00000modemO OO0 0Omodemd O 0O0OO0OOMOMO
O0modemd OO0 O0O0O0OOmodemO OO0 00000
Jododododododooooooodooodo
Jododododododooooooodo o

O Unixt O O O O O ioctl(input output control] 0 I )0 O O O
JodododododiectidOdOdOUOOO octlOd
Jodododouododouodododiloctidod
JododododododotdoiectiD oo od
Jododododododooooodgo loctio OO
OO0OioctiDOO0O0O0OO0O0OOOOOOOOOOOloctlD OO
Jododododod _1o0 10RO _1OWLH _IOWRO O O
Jododododododotdoiecti o odod
OO00OOiectsOD D O0OO0O0OO0OOUOO0OOUOO0OOOOn
Jod0ododododddchardevh OO0 OO0
ioctlcD DUOOUOOUOOU0OOUOOOOOOOOIoctlsO OO



O000000OOoctiDO0O0OO00O00O0O00OOO ioctls
Oo00o00o0ooooooooooooooooodgo
0000000 O documentation/ioctl-number.txtll OO O O O

0 00O 0O 0O exchardev.c /* chardev.c * * Create an input/output
character device */ /* Copyright (C) 1998-99 by Ori Pomerantz */ /*
The necessary header files */ /* Standard in kernel modules */
#include /* Were doing kernel work */ #include /* Specifically, a
module */ /* Deal with CONFIG_MODVERSIONS */ #if
CONFIG_MODVERSIONS==1 #define MODVERSIONS
#include #endif /* For character devices */ /* The character device
definitions are here */ #include /* A wrapper which does next to
nothing at * at present, but may help for compatibility * with future
versions of Linux */ #include /* Our own ioctl numbers */ #include
"chardev.h" /* In 2.2.3 /usr/include/linux/version.h includes a *
macro for this, but 2.0.35 doesnt - so | add it * here if necessary. */
#ifndef KERNEL_VERSION #define KERNEL VERSION(a,b,c)
((2)*65536 (b)*256 (¢)) #endif #if LINUX_VERSION_ CODE >=
KERNEL_VERSION(2,2,0) #include /* for get_user and put_user */
#endif #define SUCCESS 0 /* Device Declarations
kkhkkkkkkhkkhkkkkhkkhkkkkikkhkkkkikkikkhkkikkikikkk */ /* The name for OUI’ dEVICE, aS
it will appear in * /proc/devices */ #define DEVICE_NAME
"char_dev" /* The maximum length of the message for the device */
#define BUF_LEN 80 /* Is the device open right now? Used to
prevent * concurent access into the same device */ static int
Device_Open = 0. /* The message the device will give when asked */
static char Message[BUF _LEN]. /* How far did the process reading



the message get? * Useful if the message is larger than the size of the *
buffer we get to fill in device read. */ static char *Message_Ptr. /*
This function is called whenever a process attempts * to open the
device file */ static int device_open(struct inode *inode, struct file
*file) { #ifdef DEBUG printk ("device_open(%p)\n", file). #endif /*
We dont want to talk to two processes at the * same time */ if
(Device_Open) return -EBUSY. /* If this was a process, we would
have had to be * more careful here, because one process might have *
checked Device_Open right before the other one * tried to
Increment it. However, were in the * kernel, so were protected
against context switches. * * This is NOT the right attitude to take,
because we * might be running on an SMP box, but well deal with *
SMP in a later chapter. */ Device_Open . /* Initialize the message */
Message Ptr = Message. MOD _INC_USE_COUNT. return
SUCCESS. } /* This function is called when a process closes the *
device file. It doesnt have a return value because * it cannot fail.
Regardless of what else happens, you * should always be able to close
a device (in 2.0, a 2.2 * device file could be impossible to close). */ #if
LINUX_ VERSION_CODE >= KERNEL_VERSION(2,2,0) static
Int device_release(struct inode *inode, struct file *file) #else static
void device_release(struct inode *inode, struct file *file) #endif {
#ifdef DEBUG printk ("device_release(%p,%p)\n", inode, file).
#endif /* Were now ready for our next caller */ Device_Open --.
MOD_DEC _USE_COUNT. #if LINUX_VERSION CODE >=
KERNEL_VERSION(2,2,0) return 0. #endif }/* This function is
called whenever a process which * has already opened the device file



attempts to * read from it. */ #if LINUX_VERSION_CODE >=
KERNEL_VERSION(2,2,0) static ssize_t device read( struct file
*file, char *buffer, /* The buffer to fill with the data */ size_t length, /*
The length of the buffer */ loff t *offset) /* offset to the file */ #else
static int device_read( struct inode *inode, struct file *file, char
*buffer, /* The buffer to fill with the data */ int length) /* The length
of the buffer * (mustnt write beyond that!) */ #endif { /* Number of
bytes actually written to the buffer */ int bytes read = 0. #ifdef
DEBUG printk("device_read(%p,%p,%d)\n", file, buffer, length).
#endif /* 1f were at the end of the message, return 0 * (which signifies
end of file) */ if (*Message_Ptr == 0) return 0. /* Actually put the
data into the buffer */ while (length amp. *Message Ptr) { /* Because
the buffer is in the user data segment, * not the kernel data segment,
assignment wouldnt * work. Instead, we have to use put_user which
* copies data from the kernel data segment to the * user data
segment. */ put_user(*(Message_Ptr), buffer ). length --. bytes read
. } #ifdef DEBUG printk ("Read %d bytes, %d left\n", bytes read,
length). #endif /* Read functions are supposed to return the number
* of bytes actually inserted into the buffer */ return bytes read. }/*
This function is called when somebody tries to * write into our
device file. */ #if LINUX_VERSION_CODE >=

KERNEL VERSION(2,2,0) static ssize_t device write(struct file
*file, const char *buffer, size_t length, loff t *offset) #else static int
device_write(struct inode *inode, struct file *file, const char *buffer,
int length) #endif { int . #ifdef DEBUG printk
("device_write(%p,%s,%d)", file, buffer, length). #endif for(i=0. i #if



LINUX_ VERSION_CODE >= KERNEL_VERSION(2,2,0)
get_user(Message, buffer 1). #else Message = get_user(buffer i).
#endif Message Ptr = Message. /* Again, return the number of input
characters used */ return i. }/* This function is called whenever a
process tries to * do an ioctl on our device file. We get two extra *
parameters (additional to the inode and file * structures, which all
device functions get): the number * of the ioctl called and the
parameter given to the * ioctl function. * * If the ioctl is write or
read/write (meaning output * is returned to the calling process), the
loctl call * returns the output of this function. */ int device_ioctl(
struct inode *inode, struct file *file, unsigned int ioctl_num,/* The
number of the ioctl */ unsigned long ioctl_param) /* The parameter
to it*/ {inti. char *temp. #if LINUX_VERSION_CODE >=
KERNEL_VERSION(2,2,0) char ch. #endif /* Switch according to
the ioctl called */ switch (ioctl_num) { case IOCTL_SET_MSG: /*
Receive a pointer to a message (in user space) * and set that to be the
devices message. */ /* Get the parameter given to ioctl by the process
*/ temp = (char *) ioctl_param. /* Find the length of the message */
#if LINUX_VERSION_CODE >= KERNEL_ VERSION(2,2,0)
get_user(ch, temp). for (i=0. ch amp. ibr temp ) i ,> get_user(ch,
temp). #else for (1=0. get_user(temp) amp. ibrtemp ) i ,> . #endif /*
Dont reinvent the wheel - call device write */ #if
LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
device write(file, (char *) ioctl_param, i, 0). #else
device_write(inode, file, (char *) ioctl_param, i). #endif break. case
IOCTL_GET_MSG: /* Give the current message to the calling *



process - the parameter we got is a pointer, * fill it. */ #if

LINUX VERSION_CODE >= KERNEL_VERSION(2,2,0)i=
device_read(file, (char *) ioctl_param, 99, 0). #else | =
device_read(inode, file, (char *) ioctl_param, 99). #endif /* Warning
- we assume here the buffer length is * 100. If its less than that we
might overflow * the buffer, causing the process to core dump. * *
The reason we only allow up to 99 characters is * that the NULL
which terminates the string also * needs room. */ /* Put a zero at the
end of the buffer, so it * will be properly terminated */ put_user(\,
(char *) ioctl_param i). break. case IOCTL_GET_NTH_BYTE: /*
This ioctl is both input (ioctl_param) and * output (the return value
of this function) */ return Message[ioctl_param]. break. } return
SUCCESS }/* Module DeC|aI’a'[I0nS kkhkkkkhkkkhkkkkikkkikkkikkkhkkkikkkikkkikkk
*[ [* This structure will hold the functions to be called * when a
process does something to the device we * created. Since a pointer to
this structure is kept in * the devices table, it cant be local to *
Init_module. NULL is for unimplemented functions. */ struct
file_operations Fops = { NULL, /* seek */ device_read, device_write,
NULL, /* readdir */ NULL, /* Oselect */ device 1octl, /* ioctl */
NULL, /* mmap */ device_open, #if LINUX_VERSION_CODE
>= KERNEL_VERSION(2,2,0) NULL, /* flush */ #endif
device_release /* a.k.a. close */ }. /* Initialize the module - Register
the character device */ int init_module() { int ret_val. /* Register the
character device (atleast try) */ ret_val =
module_register_chrdev(MAJOR_NUM, DEVICE_NAME,
&amp.Fops). /* Negative values signify an error */ if (ret_val 100Test



ODOo0o0dddooododooodooooodoggn
www.100test.com



