中药动态提取发展状况 PDF转换可能丢失图片或格式,建议阅读原文

https://www.100test.com/kao_ti2020/16/2021_2022__E4_B8_AD_ E8 8D AF E5 8A A8 E6 c23 16795.htm 中药动态提取发展经 历了动态提取、动态逆流提取、动态循环连续逆流 提取三个 阶段。 动态提取阶段 相对于浸渍法来说,煎煮法、渗漉法、 回流法均属于动态提取。 煎煮法是将药材饮片或粗粉置煎煮 器中,加水使浸没药材,浸泡适宜时96第二篇中草药成分的 提取技术间,加热至沸,并保持沸腾状态至一定时间的提取 方法。药材饮片和粗粉表面有效成分的浓度差是依靠水的沸 腾搅拌作用而实现的,一般比浸渍法提取效果好。如果在夹 层锅、多能提取罐等提取设备上增设搅拌器、泵等,可实现 强制循环,提高提取效率。但由于煎煮法多采用水为溶剂, 温度较高,仅适用于有效成分溶于水,且对湿、热较稳定的 药材。 渗漉法也属于动态提取,是将药材粗粉置于渗漉器内 ,溶剂连续地从渗滤器的上部加入,渗油液不断地从下部流 出,从而浸出药材中有效成分的方法。根据操作方法的不同 ,可将渗漉法分为单渗漉法、重渗漉法、加压渗漉法、逆流 渗漉法等。其中单渗漉法所用溶剂较多;重渗漉法中一份溶 剂能多次利用,溶剂用量较单渗漉法减少,同时渗漉液中有 效成分浓度高,不必再加热浓缩,可避免有效成分受热分解 或挥发损失,成品质量好,但所占容器较大,操作麻烦,较 为费时;加压渗漉可使溶剂及浸出液较快通过粉柱,使渗源 顺利进行,提高浸出效果,提取液浓度大,溶剂耗量小;逆 流渗源法是药材与溶剂在浸出容器中沿相反方向运动,连续 而充分地进行接触提取的一种方法,属于动态逆流提取。 回

流法是用乙醇等具有挥发性的有机溶剂提取药材有效成分, 将浸出液加热蒸馏,其中挥发性溶剂气化后又被冷凝,重新 流回浸出器中浸提药材,这样周而复始,直至有效成分提取 完全的方法。回流法可分为回流热浸法和回流冷浸法。回流 法较渗漉法的溶剂耗量小,溶剂能循环使用,但回流热浸法 溶剂只能循环使用,不能不断更新,而回流冷浸法溶剂既可 以循环使用,又能不断更新,故溶剂用量少,浸提较完全。 由于回流法需连续加热,浸提液在浸出器中受热时间较长, 故不适用于受热易破坏的药材成分的浸出。 动态逆流提取阶 段 螺旋式逆流提取装置螺旋式逆流提取采用动态原理,使药 材颗粒扩散界面周围的药物有效成分迅速向溶剂中扩散,使 扩散界面内外始终保持较高的浓度差,同时应用逆流原理以 实现各提取工作段内药材颗粒扩散界面内外维持较均匀的浓 度差。 逆流提取装置,由投料斗、进料螺旋输送器、回转式 提取滚筒、出渣螺旋输送器组成。原料经粗粉碎、浸润后从 提取机组投料斗投入,由进料螺旋输送器强制推入回转式提 取滚筒内,滚筒缓慢旋转,固定在滚筒内壁上的螺旋带将物 料从机组前端向后缓慢推进,同时提取溶剂从机组末端的进 液管进入提取筒内,由滚筒后端穿过移动的物料向前端流动 , 固液两相物质在这种逆向运动中充分接触 , 从而将药材中 有效成分提取出来。药渣经出渣螺旋输送器强制推动至出渣 口而排出机组,出渣螺旋同时对药渣进行挤压,将药渣中残 留药液挤出药材组织,减少药渣中残留药液含量。 97 中草药 成分提取分离与制剂加工新技术新工艺新标准实用手册 98 第 二篇中草药成分的提取技术螺旋杆式连续逆流提取设备是动 态提取、逆流提取、煎煮提取工艺的结合,在保留多种传统

工艺优点的同时,创造了这些传统工艺所无法达到的诸多优 点:提取速度快,有效成分提取充分,提取收得率高;溶剂 耗量少,药液浓度高,减少了蒸发浓缩等后续处理工序;滚 筒内药材颗粒移动速度可调节,从而可根据药材特点调节提 取时间的长短;药材在温和的动态环境下进行提取,加热温 度较低,有效成分破坏较少,使药液中杂质含量少;属于连 续式生产,处理能力大。 动态温浸提取设备动态温浸提取设 备是利用机械强制循环方式,使溶剂在提取罐内自上而下连 续循环,流动浸出,促使固、液两相产生较高的相对运动速 度,扩散边界层变得更薄,加快了药材中溶质向溶剂中的扩 散。动态温浸工艺流程见图。 图动态温浸工艺流程:动态温浸 罐;夹套管加热器;泵;溶剂储罐;冷凝管;冷却器;溶剂 中间槽动态温浸工艺具有以下特点:浸出温度较煎煮法低, 既可预防药材内淀粉、胶体物质过度糊化、膨胀,影响溶质 渗出,又可避免因其大量浸出而造成分离、浓缩困难;药材 表面积大,增加溶质溶解、扩散的速度;浸出时间短,固、 液两相的相对运动速度增加,扩散界面层更新快,溶质扩散 平衡时间短;溶质流失少。99中草药成分提取分离与制剂加 工新技术新工艺新标准实用手册苗青以麻黄碱含量为评价指 标,比较了煎煮法和动态温浸提取法的提取效果:一份采用 煎煮法,加倍量水,煎煮次,每次,合并三次提取液,测得 麻黄碱含量为);另一份用动态温浸工艺,加倍量水,浸提温 度为,提取两次,第一次,第二次,合并提取液,测得麻黄 碱的含量为)。五味子乙醇相同溶剂用量,回流法提取两次, 每次0,测得五味子乙素含量为);动态温浸[(1)]提取两 次,每次,同法测得五味子乙素的含量为11)。由于连翘酯苷

性质不稳定,遇酸、遇热易分解,任延久等对其进行了动态 提取研究;以溶剂用量、提取温度、提取时间作为考察因素 ,采用2正交表进行试验,筛选出的最佳动态提取工艺条件 为0倍量水,1连续动态提取0。与传统煎煮法比较,动态提取 (粗粉)法连翘酯苷含量为)3),而煎煮法为)3)。可见动态温 浸提取具有扩散传质过程快、温度低等优点,可避免因浸出 时间过长而导致有效成分的分解破坏等。 动态循环阶段连续 逆流提取阶段 动态循环阶段逆流提取于0世纪年代初开始应 用。首先出现的是外循环式动态提取罐,其特点为外加热, 外循环溶液动态提取,排渣口有滤网、滤板,可自身过滤, 具有多种功能,可单罐提取、罐组顺流、逆流提取。双向外 加热式外循环动态提取罐于年开始应用,除了和锥式外循环 动态提取罐特征一样外,还具有以下特点:在罐体中央有一 圆柱式内加热器,外夹层分上、下两段,蜂窝焊接,循环泵 流量大,扬程低。动态循环阶段连续逆流提取是针对中药常 规提取方法溶剂用量大的不足,将多个提取单元科学组合, 单元之间的浓度梯度(物料和溶剂)合理排列并进行相应的 流程配置。每个单元利用机械手段采用强制循环方式,使溶 剂自上而下或自下而上连续循环,流动浸出,促使固、液两 相产生较高的相对运动速度,提高固4液扩散界面层的更新速 度,提高浸出效率。100Test下载频道开通,各类考试题目直 接下载。详细请访问 www.100test.com