西南交通大学桥梁与隧道工程(081406)专业介绍 PDF转换可能 丢失图片或格式,建议阅读原文

https://www.100test.com/kao_ti2020/206/2021_2022__E8_A5_BF_ E5 8D 97 E4 BA A4 E9 c73 206142.htm "桥梁与隧道工程 "学科是西南交通大学独具特色的传统优势学科,是国家首 批具有硕士、博士学位授予权的学科,是国家重点学科, "211工程"重点建设学科,设有"长江学者奖励计划"特聘 教授岗位。 该学科包含桥梁工程和隧道与地下工程两部分。 桥梁工程 一、学科概况 本学科是我校传统优势学科, 国家级 重点学科,具有博士、硕士、工程硕士和高师硕士的培养和 学位授予权,建有桥梁工程、隧道与地下工程铁道部重点开 放实验室,具有大型工业风洞、电液伺服结构试验系统、千 吨级压力机和结构静、动力分析试验系统,并设有"长江学 者奖励计划"特聘教授岗位。在毕业生中有茅以升、林同炎 等一批(20余名)中国科学院和工程院院士及建筑勘测设计 大师。本学科在预应力混凝土结构理论、既有结构可靠性和 耐久性评估、大跨新型桥梁的设计理论与实践、桥梁结构风 工程、车桥耦合动力学、空间结构受力行为、大型桥梁结构 的施工控制理论、方法与技术等方面均开展了深入系统的研 究。本学科在虎门大桥、汕头海湾大桥、江阴长江大桥、万 县长江大桥、南京第二、第三长江大桥、润扬长江大桥、苏 通长江大桥、西堠门大桥等大跨度新型桥梁的设计与施工中 均承担了大量的科研项目并提出了非常重要的关键技术研究 成果。研究成果获国家科技进步一等奖1项、二等奖2项、三 等奖1项、国家级教学成果一等奖1项,省部级科技进步奖20 项,年科研经费逾千万元。获奖成果主要有:国家科技进步

一等奖"万县长江大桥特大跨(420m)钢筋混凝土拱桥设计 施工技术研究"、教育部科技进步二等奖"现代预应力钢筋 混凝土结构体系与计算理论"、铁道部科技进步二等奖"大 中跨度部分预应力混凝土(PPC)铁路连续梁的研究"、国 家科技进步三等奖"主跨72米部分预应力混凝土连续梁"、 铁道部科技进步二等奖"主跨72米铁路预应力混凝土平弯连 续刚构桥建造技术"、四川省科技进步二等奖"无粘结部分 预应力混凝土在公路桥梁中的应用"、交通部科技进步特等 奖"虎门大桥建设成套技术"、南京市科学技术进步一等奖 "大跨度全焊钢箱梁斜拉桥施工控制技术研究"、南京市科 学技术进步二等奖"斜拉索锚头与钢箱梁的联结和安全可靠 性研究"等。二、主要研究方向1.桥梁结构动力响应主要研 究桥梁结构动力响应行为,在高速移动运输工具作用下,运 输工具-桥梁结构相互作用和系统动力响应,近10余年来,结 合我国准高速铁路的建设及高速铁路的技术准备工作,开展 了大量车-桥耦合动力学的研究。 2.既有桥梁结构损伤识别与 健全性评估理论 主要研究既有桥梁结构的损伤状态、承载能 力、使用性能等,随着桥梁结构服役期限的增长以及交通量 的增加,既有桥梁的评定、加固、改造问题日益突出,该方 向自20世纪90年代初即开展了承载能力评定、耐久性评估等 ,近年来,在损伤识别理论与方法方面正在开展更加深入的 研究。 3.现代桥式及桥梁结构设计理论 该方向主要研究现代 大跨度桥梁与结构的空间分析理论、结构稳定理论、高性能 混凝土及其在桥梁工程中的应用、现代预应力混凝土结构理 论、钢-混凝土组合桥梁结构行为、桥梁结构非线性行为等。 4.桥梁抗风与抗震 主要研究桥梁结构的抗风性能、抗震性能

、振动控制及相关基础理论问题,已在桥梁风致振动、斜拉索雨振等研究领域取得良好成果,获奖成果的有铁道部科技进步二等奖"汕头海湾大桥抗风试验"等。 三、从业领域 主要从业领域为:桥梁与隧道工程、结构工程等土木工程领域的教学、科研、设计、工程管理等工作。 四、主要相关学科工程力学、结构工程、防灾减灾工程及防护工程、岩土工程、地质工程、材料学、市政工程等。 100Test 下载频道开通,各类考试题目直接下载。详细请访问 www.100test.com