oracle数据仓库设计指南 PDF转换可能丢失图片或格式,建议阅读原文

https://www.100test.com/kao_ti2020/223/2021_2022_oracle_E6_95 B0 E6 c102 223558.htm 在一般的数据仓库应用系统中,根 据系统体系结构的不同,数据仓库设计的内容和范围不尽相 同,并且设计方法也不尽相同,下面的两幅图示分别表示带 有ODS的数据仓库应用系统体系结构和不带ODS的数据仓库 应用系统体系结构。本文将说明两个体系结构上的差异以及 这种差异造成的设计方法的不同,并且重点介绍带有ODS的 体系结构中数据仓库的设计方法。 在数据仓库的设计指导思 想中,数据仓库的概念定义是非常重要的,数据仓库概念规 定了数据仓库所具有的几个基本特性,这些特性也正是对数 据仓库设计结果进行检验的重要依据。 根据Bill.Inmon的定义 ,"数据仓库是面向主题的、集成的、稳定的、随时间变化 的,主要用于决策支持的数据库系统"。ODS(Operational Data Store)是数据仓库体系结构中的一个可选部分, ODS具 备数据仓库的部分特征和OLTP系统的部分特征,它是"面向 主题的、集成的、当前或接近当前的、不断变化的"数据。 一般在带有ODS的系统体系结构中,ODS都设计为如下几个 作用:1)在业务系统和数据仓库之间形成一个隔离层一般 的数据仓库应用系统都具有非常复杂的数据来源,这些数据 存放在不同的地理位置、不同的数据库、不同的应用之中, 从这些业务系统对数据进行抽取并不是一件容易的事。因此 ,ODS用于存放从业务系统直接抽取出来的数据,这些数据 从数据结构、数据之间的逻辑关系上都与业务系统基本保持 一致,因此在抽取过程中极大降低了数据转化的复杂性,而

主要关注数据抽取的接口、数据量大小、抽取方式等方面的 问题。 2) 转移一部分业务系统细节查询的功能 在数据仓库 建立之前,大量的报表、分析是由业务系统直接支持的,在 一些比较复杂的报表生成过程中,对业务系统的运行产生相 当大的压力。ODS的数据从粒度、组织方式等各个方面都保 持了与业务系统的一致,那么原来由业务系统产生的报表、 细节数据的查询自然能够从ODS中进行,从而降低业务系统 的查询压力。3)完成数据仓库中不能完成的一些功能一般 来说,带有ODS的数据仓库体系结构中,DW层所存储的数 据都是进行汇总过的数据,并不存储每笔交易产生的细节数 据,但是在某些特殊的应用中,可能需要对交易细节数据进 行查询,这时就需要把细节数据查询的功能转移到ODS来完 成,而且ODS的数据模型按照面向主题的方式进行存储,可 以方便地支持多维分析等查询功能。 在一个没有ODS层的数 据仓库应用系统体系结构中,数据仓库中存储的数据粒度是 根据需要而确定的,但一般来说,最为细节的业务数据也是 需要保留的,实际上也就相当于ODS,但与ODS所不同的是 ,这时的细节数据不是"当前、不断变化的"数据,而是" 历史的,不再变化的"数据。设计方法在数据仓库设计方法 和信息模型建模方法中,前人的著作对各种思路和方法都做 过大量的研究和对比,重点集中在ER模型和维模型的比较和 应用上。根据我们的实践经验,ER模型和维模型在数据仓库 设计中并非绝对对立,尤其在ODS设计上,从宏观的角度来 看数据之间的关系,以ER模型最为清晰,但从实现出来的数 据结构上看,用维模型更加符合实际的需要。因此孤立地 看ER模型或者维模型都缺乏科学客观的精神,需要从具体应

用上去考虑如何应用不同的设计方法,但目标是一定的,就是要能够把企业的数据从宏观到微观能够清晰表达,并且能够实现出来。本文中重点介绍维模型的应用。[1][2][3]下一页 100Test 下载频道开通,各类考试题目直接下载。详细请访问 www.100test.com