2008职称英语理工类完型填空训练(十) PDF转换可能丢失图片 或格式,建议阅读原文 https://www.100test.com/kao_ti2020/458/2021_2022_2008_E8_81_ 8C_E7_A7_B0_c91_458509.htm Less Is MoreIt sounds all wrongdrilling holes in a piece of wood to make it more resistant to knocks. But it works because the energy from the blow gets distributed throughout the wood rather than focusing on one weak spot. The discovery should lead to more effective and ligher packaging materials. Carpenters have known _____1__ centuries that some woods are tougher than others. Hickory, for example, was turned into axe handles and cartwheel spokes because it can absorb shocks without breaking. White oak, for example, is much more easily damaged, _____2 it is almost as dense.1 Julian Vincent at Bathe University and his team were convinced the wood 's internal structure could explain the differences. Many trees have tubular vessels that run _____3___ the trunk and carry water to the leaves. In oak they are large, and arranged in narrow bands, but in hickory they are smaller, and more evenly distributed. The researchers ____4___ this layout might distribute a blow 's energy throughout the wood, soaking up a bigger hit. To test the idea, they drilled holes 0.65 millimetres across into a block of spruce, a wood with ____5__vessels, and found that____6__ withstood a harder knock. ____7__ when there more than about 30 holes per square centimeter did the wood 's performance Odrop off. A uniform substance doesn 't cope well with knocks because only a small proportion of the material is actually _____8__. All the energy

from the blow goes towards breaking the material in one or two
places, but often the pieces left9 are pristine.But instead of
the energy being concentrated in one place, the holes provide many
weak spots that all absorb energy as they break, says Vincent. " You
are controlling the places10 the wood breaks, and it can
then absorb more11, more safely. " The researchers
believe the principle could be applied to any material12
example, to manufacture lighter and more protective packaging. It
could13 be used in car bumpers, crash barriers and
armour for military vehicles, says Ulrike Wegst,14 the
Max Plank Institute for Mental Research in Stuttgart. But she
emphasizes that you 'd15 to to design the substance
with the direction of force in mind. " The direction of loading is
crucial, "she says. 1. A) for B) since C) in D) at2. A) but B)
although C) and D) despite3. A) down B) over C) up D) into4. A)
discovered B) concluded C) found D) thought5. A) no B) per C)
each D) every6. A) the idea B) it C) they D) the spruce7. A) If B) Just
C) Only D) Rarely8. A) effected B) beaten C) slapped D) affected9.
A) behind B) beyond C) for D) intact10. A) which B) where C) that
D) there11. A) water B) air C) energy D) safety12. A) among B) in
C) as D) for 13. A) also B) besides C) else D) yet 14. A) over B) at C)
around D) on15. A) necessity B) must C) need D) had 100Test 下载
频道开通,各类考试题目直接下载。详细请访问
www.100test.com