解析虚拟化数据中心:网络虚拟化纵横谈思科认证 PDF转换可能丢失图片或格式,建议阅读原文

https://www.100test.com/kao_ti2020/590/2021_2022__E8_A7_A3_ E6 9E 90 E8 99 9A E6 c101 590381.htm 随着数据集中在企 业信息化领域的展开,企业级数据中心的建设当前成为行业 信息化的新热点。传统的数据中心的关键需求是性能、安全 永续,随着应用的展开,服务器、存储、网络在数据中心 内的不断增长、集中,引起较多的问题,网络规划设计部门 往往为单个或少数几个应用建设独立的基础网络,使得数据 中心网络系统十分复杂。 随着应用的整合需求越来越强烈, 对数据中心的资源进行虚拟化是当前的主要趋势, 也是当 前IT业内最为令人关注的技术领域。 数据中心虚拟化的基础 网络技术趋势,延续了传统数据中心性能、安全、永续的基 本需求,而且进一步简化网络架构,更有力支撑应用层面虚 拟化,降低运维复杂度,提高了灵活性。 网络虚拟化 网络虚 拟化技术也随着数据中心业务要求有不同的形式。多种应用 承载在一张物理网络上,通过网络虚拟化分割(称为纵向分 割)功能使得不同企业机构相互隔离,但可在同一网络上访问 自身应用,从而实现了将物理网络进行逻辑纵向分割虚拟化 为多个网络.多个网络节点承载上层应用,基于冗余的网络设 计带来复杂性,而将多个网络节点进行整合(称为横向整合) , 虚拟化成一台逻辑设备, 提升数据中心网络可用性、节点 性能的同时将极大简化网络架构。 网络虚拟化---纵向分割 如 果把一个企业网络分隔成多个不同的子网络——它们使用不 同的规则和控制,用户就可以充分利用基础网络的虚拟化路 由功能,而不是部署多套网络来实现这种隔离机制。 网络虚

拟化概念并不是什么新概念,因为多年来,虚拟局域 网(VLAN)技术作为基本隔离技术已经广泛应用。当前在交换 网络上通过VLAN来区分不同业务网段、配合防火墙等安全 产品划分安全区域,是数据中心基本设计内容之一。 出于将 多个逻辑网络隔离、整合的需要, VLAN、MPLS-VPN、 Multi-VRF技术在路由环境下实现了网络访问的隔离,虚拟化 分割的逻辑网络内部有独立的数据通道,终端用户和上层应 用均不会感知其它逻辑网络的存在。但在每个逻辑网络内部 , 仍然存在安全控制需求, 对数据中心而言, 访问数据流从 外部进入数据中心,则表明了数据在不同安全等级的区域之 间流转,因此,有必要在网络上提供逻辑网络内的安全策略 ,而不同逻辑网络的安全策略有各自独立的要求,虚拟化安 全技术,将一台安全设备可分割成若干台逻辑安全设备(成为 多个实例),从而很好满足了虚拟化的深度强化安全要求。 如 图1所示,虚拟化网络与虚拟化安全的整体结合,通道化设计 ,构成了完整的数据中心基础网络架构。 图1 基于纵向分割 的网络虚拟化 网络虚拟化---横向整合 数据中心是企业IT架构 的核心领域,不论是服务器部署、网络架构设计,都做到精 细入微。因此,传统上的数据中心网络架构由于多层结构、 安全区域、安全等级、策略部署、路由控制、VLAN划分、 二层环路、冗余设计等诸多因素,导致网络结构比较复杂, 使得数据中心基础网络的运维管理难度较高。 使用智能弹性 架构(intelligent resilient framework, IRF)虚拟化技术,用户可以 将多台设备连接,"横向整合"起来组成一个"联合设备" , 并将这些设备看作单一设备进行管理和使用。多个盒式设 备整合类似于一台机架式设备,多台框式设备的整合相当于

增加了槽位,虚拟化整合后的设备组成了一个逻辑单元,在网络中表现为一个网元节点,管理简单化、配置简单化、可跨设备链路聚合,极大简化网络架构,同时进一步增强冗余可靠性。 100Test 下载频道开通,各类考试题目直接下载。详细请访问 www.100test.com