碾压混凝土大坝设计施工的创新与发展趋向岩土工程师考试 PDF转换可能丢失图片或格式,建议阅读原文

https://www.100test.com/kao_ti2020/641/2021_2022__E7_A2_BE_ E5 8E 8B E6 B7 B7 E5 c63 641489.htm 把岩土师站点加入收 藏夹 1.富浆碾压混凝土 富浆碾压混凝土 (GEROC) 已广泛地 在中国应用于大坝的下游护面和贴靠模板、岩石坝肩以及在 诸如止水等埋件处的RCC浇筑。同样亦已用于约旦的Tannur 坝,哥伦比亚的Miel 1号坝,澳大利亚的Cadiangullong坝,也 许还有其他的地方。对此项技术在Olivenhain坝进行了浇筑试 验,且正在美国密西西比州维克斯堡的陆军工程师兵团实验 室内和弗吉尼亚州西部的休斯河北汊坝进行研究。 1.1 GERCC的发展 GERCC的开发是为增强其和易性和耐久性, 以便用于领拉模板处、止水等埋件周围、领拉岩石坝肩表面 处和RCC大坝的上游和下游护面。 浇筑GERCC的过程是将水 泥胶浆加入到RCC的混合物中去,使之完全改变其成分。在 理论上,水泥胶浆按比例分布在RCC中,产生一种混合物, 此混合物的特性和传统的非加气混凝土的特性相似。浇 筑GERCC的典型施工过程包括下列步骤: 在已压实的RCC浇 筑层表面浇一层水泥胶浆垫层;在垫层混合料之上摊铺RCC ;在未碾压的RCC浇筑层表面上摊铺水泥胶浆;用振捣器捣 实GERCC; 压实RCC浇筑层的其余部分。 虽然这一过程似 乎比较简单,但存在一些潜在的毛病,将在以后加以讨论。 1.2美国的富浆浇筑试验 近年来,在美国GERCC已大力发展 起来。虽然较早地做过浇筑试验,但有关GERCC最近的使用 经验是在AtlantaRoad坝、Olivenhain坝和休斯河北汊坝取得的 Atlanta Road坝的试验是应用板状打夯机以代替振捣器从外部

压实混凝土。 1.3 Olivenhain坝试验浇筑的经验 Olivenhain大坝 的RCC浇筑试验包括GERCC作为护面系统和作为RCC与岩石 的接触面的坝肩处理两种情况的研究。该过程的第一步是选 定GERCC的目标配合比。混合料设计过程的基本途径是 将RCC改变成坍落度约为7~10cm , 抗压强度为20.6MN/m2 的非加气常规混凝土。采用ACI211中的标准惯例 , GERCC要 求胶结材料的含量约281.7kg/m3和含水量169kg/m3.由 于RCC配合比是预先确定的,因此水泥浆的配合比和水泥胶 浆与RCC的比率即为获得理想的GERCC混合料的剩余变量 , 这些值是计算得出的。表1所示的水泥胶浆、RCC和GERCC 各自的配合比是第一次浇筑试验用的。 为了浇筑和压 实GERCC,试用了好几种方法。第一种方法是首先摊铺RCC ,接着沿模板在RCC上刮出一条3.8cm深,0.9m宽的凹槽 。再将胶浆注入该槽,用一个直径为6.35cm的Micon型高周 波振岛器(10800次/min)进行振捣。对于第一次试验,大 多数灰浆留在表面没有渗入或与RCC混合。 第二次试验 是ETMicon型高周波的振岛器进行的。这次试验仅在RCC顶 部铺少部分胶浆,以便更好地观察RCC对内部振捣作用的反 映。将水加入RCC中,使RCC的贝氏值(VeBetime)从25s降 至15s.根据第二次试验的观测,高周波振岛器既没有捣实RCC 又没有把灰浆混合到混合料中,在振岛器插入RCC的地方还 留有一个敞口洞。 另外还用GERCC作护面系统进行过两次试 验。使用2台7.6cm直径的Malon型风动振岛器做这些试验。 振捣器成组安装在反铲上,间距0.3m.风动振岛器传给的能 量比高周波振捣器的能量大得多,且能在振岛器几英寸范围 内捣实RCC.但是振岛器抽出后仍留有空洞,捣实似乎不完全

, 且捣实部位仅局限于振捣周围。 根据对护面系统内部振动 的试验结果,决定取消用GERCC进行Olivenhain大坝坝肩处 理试验。由于GERCC混合料的贝氏值为15~20s,这表明它太 干燥,不能用内部振动的方法完全捣实。因此胶浆也难以渗 入和适当的混合。可以得出结论:为了使GERCC能完全捣实 ,则要求贝氏值更低,这就会导致具体RCC的强度比坝内要 求的强度低。还可以得出结论:要使GERCC获得成功,碾压 混凝土混合料 可能必须具有足够的和易性,以利于插入振捣 也能单独捣实,并使灰浆渗入和混和。1.4到目前为止的结论 GERCC的成功浇筑,似乎需要其混合料有较好的和易性(贝 氏值 10s)和需要相对较高的胶结材料。甚至在这些条件下 , 许多专家都认为GERCC有高度的可变性 , 因为把胶浆置 于RCC表面和用振捣器来混合胶浆和RCC的方法欠妥。还有 ,企图在GERCC内加气,到现 在为止是不成功的浇筑试验和 休斯河北汊坝做的后续试验将帮助进一步确定其使用潜力和 确认获得满意的现场产品所必需的施工程序。 2 浇筑技术 在 美国,GERCC施工浇筑层的厚度通常为0.3m.除非采取特殊 措施,此方法导致层间接合成熟度最大从而使层间接合强度 和渗透性最低。对于低到中等地震区的大坝,通常只需用很 少的垫层料就能获得的层间接合抗剪和抗拉强度。在暖和气 候条件下,如果不用垫层混合料,则需要加入缓凝剂使上下 层充分粘结。浇筑层接缝充分垫底 和使用缓凝剂对于位于高 地震区的大坝是十分需要的,以便使浇筑接缝的抗拉和抗剪 强度最大。 在过去数年中,为提高浇筑层接缝的质量,使浇 筑层接缝数最少,RCC浇筑方法已大为改进。这些包括分坝 段或梯级坝段施工法,厚层浇筑,和由中国创造的斜层浇筑

法。 2.1分坝段或梯级坝段施工 在美国,新近的几座RCC大坝 ,包括BigHaynes , PennForest和HuntingRun大坝已经全部或部 分采用分坝段的方式进行施工,类似于常规重力坝施工方法 。对于分坝段施工,横向伸缩缝的一个或多个坝段先施工, 然后转移到另一个坝段或一组坝段工作。 梯级坝段法先浇筑 升高一个或多个坝段的几层,然后浇相邻的坝段。此法的主 要好处是:在有效工作范围内快速浇筑各层使浇筑层的接合 成熟度能显著地降低。其结果是浇筑层接缝抗拉和抗剪强度 增加,可以减少冷缝垫层混合料的用量。另外,此法允许在 一个区域施工时,另一个区域可同时进行开挖、廊道施工、 钻孔和最后冲洗或其他工作。分坝段和梯级坝段施工的缺点 是:工作区的未端需要模板,通向浇筑面更加困难,对护面 施工可能有影响。 2.2厚层浇筑 较厚水平浇筑层的施工主要受 供料系统、铺料等设备的容量限制。所以水平浇筑层0.3m 厚已经或多或少地变为世界性标准了。当厚层浇筑不需要增 加浇筑层接缝的抗剪强度时,这种方法确定可减少浇筑层接 缝数目。更厚的浇筑层既可通过单个厚层浇筑完成,也可通 过分层浇筑RC C完成一个较厚的浇筑层,类似于15年前 在ElkCreek大坝采用的施工程序。在 Elk Creek, RCC按15 . 3cm厚铺料,每层分别用推土机压实。浇筑了4层后共61cm 厚的浇筑层用振动碾压机压实。在ElkCreek,较厚浇筑层的成 功压实既要求其贝氏值低(8~10s),又需对15.3cm厚的每 层铺料用推土机充分压实 根据核子密度试验结果,压实实质 上是推土机单独完成。 对层厚大于0.3m的RCC浇筑研究是 最近在Olivenhain大坝完成的试验浇筑合同的一部分。进行了 厚度为38、46和61cm的浇筑层研究实验。用一个浇筑层的厚

度为46cm分2层铺料的操作进行广泛的试验。如在ElkCreek大 坝,对较厚的浇筑层,要使它充分密实,需要较低的贝氏值 。Olivenhain大坝厚层浇筑试验采用的贝氏值大约是14~1 6s. 除了采用较低的贝氏值之外,还需用20t振动碾压机碾压8遍 以完成压实过程,达到可接受的水平。作为比较,对于由单 层铺料而成的0.3m厚的浇筑层,用10t重的振动碾 压机压8遍 ,已达到充分密实。于是决定:RCC按更厚的浇筑层浇筑, 不适合于Lliv enhain工程,部分原因是未压实材料暴露在干、 热气候中的部分增多,由重碾压机所致的对浇筑层上部的损 害,且需要增加拌和水以便提供必要的贝氏值。还要增加水 的用量,以满足需要的强度。虽然Oliverhain大坝工程没有采 用更厚的层,但是厚的浇筑层施工对其他工程可能是一种可 行的选择。 2.3斜层浇筑 这种浇筑方法,是采用浇筑许多斜坡 单层的办法形成厚块RCC而向前推进的,各单层都从本块顶 部向下斜延到前一厚块的顶部。各子层的坡度是根据浇筑能 力和浇筑面积规定的,而要确定 的是浇筑每一层所需的时间 。陡坡降低层间浇筑时间,但太陡会造成施工设备利用不够 充分.每斜层都用振动碾压实。目标是降低每斜层的浇筑时间 , 从而提高浇筑层接缝质量而不使用垫层混合料。 斜层施工 方法1997年首先在中国的江垭枢纽使用。此法叫做"水平推 进斜层施工法"。此工程的最佳坡度是从15(水平) 1(垂 直)变到20 1依大坝的高程而定。设置坡度是为了提供一个 足够大的浇筑面以便有效地利用施工装备,同时又要使浇筑 面足够小以便使每层的暴露时间保持在2~4h. 在江垭枢纽用 了0.3m厚的斜坡子层,整块总厚为3m,从坝肩到坝肩推进 施工。 虽然RCC的斜层法浇筑有好多优点,但也有缺点:与

传统的RCC浇筑方法比较,需较复杂的坡度控制和有更多的浇筑层边缘要处理。 100Test 下载频道开通,各类考试题目直接下载。详细请访问 www.100test.com