C TemplateCornerCases] 1 OO OO PDFO O OO OOOO
OJ0ooooooOn
https://www.100test.com/kao_ti2020/641/2021 2022 C __Templat_
c97 4l64hmiI 0000000000 ooooood
o0 ododoodoboooooooooooood
Jododobouoodoboooooooooo oo
Jododobodoooodooooooooouoobooo
D000 00000000000 Following are some corner
cases of C template features. A lot of the text is simply extracted from
"C Templates: The Complete Guide", with some of my personal
understanding. These features are trivial and easily neglected, but you
should have some impression to them in case you run into troubles
caused by the neglect. | made my notes in English, and | dont bother
to translate them into Chinese, forgive my laziness. 0. use "typename"
to extract type defined within a type parameter, like this: typename
T::iterator itr. otherwise the itr is treated as a data member of T. 1.
zero initialization When using a var x of type T, we MUST initialize it
like this: T x = T(). so that when T is a primitive type, x can also be
initialized with 0, or NULL (when T is a pointer type). Of course we
must make sure when T is a class type, it has a default constructor.
Simply using T x. cant initialize X when T is a primitive type. 2.
template The .template Construct A very similar problem was
discovered after the introduction of typename. Consider the
following example using the standard bitset type: templategt. void
printBitset (std::bitsetgt. constlt.It.char,char_traitsgt., allocatorgt. It.)
that follows is not really "less than" but the beginning of a template

argument list. Note that this is a problem only if the construct before
the period depends on a template parameter. In our example, the
parameter bs depends on the template parameter N. 3. char star
string type at reference type parameter Suppose we have a string str:
char str[32]. The type of str symbol is "a char string" and "of 32 chars
long". similarly the literal "abc" s type is: " a char string" and "of 3
chars long", that is, the "type" information consists of both "base
type", which is "char”, and "length", which is 32 here. So such a string
Is of different type to a char* pointer, such as char*p. , a type
conversion is done if passing a string literal as argument to a function
with char* formal parameter. template gt. inline T constamp. a, T
constlt. b ? b : a. } So when we use max("abc", "def") to call above
function, it is OK. but if we use max("abc", "defg") to call it, it is
wrong, because "abc" and "defg" are of different types --- the length is
different. And automatical type conversion is not done for reference
types here. This means that the above array str, and string literals like
"abc", Is not of the same type as "char *pstr.", as most people may
believe. Actually it takes a conversion to convert str array or the
string literals to a char* type. However, during template argument
deduction array-to-pointer conversion (often called decay) occurs
only if the parameter does not have a reference type. Thus we have
the above issue. And if we dont use reference in above code, like this:
template gt. inline T max (T a, T b) {returna <. b? b : a. } Both
max("abc", "def") and max("abc", "defg") can build OK, since a
automatic conversion from string literal to char* is done, so finally
we have the same type char* as T. 4. template template types After

reading the whole lot of text in the book, I realized that this is really a
very particular feature, too complicated and restricted to use widely.
Though, since it is a very recently added new C template feature, it
can be used in your configure script to test whether your compiler
conforms to C language standard. The piece of code in the book can
directly be used in your m4 file for configure to use. 100Test [J [J [
Joodoboooooooooooooon
www.100test.com

