详细解析磁盘阵列5的容错性Linux认证考试 PDF转换可能丢失图片或格式,建议阅读原文

https://www.100test.com/kao_ti2020/644/2021_2022__E8_AF_A6_ E7 BB 86 E8 A7 A3 E6 c103 644676.htm 为了让磁盘阵列发 挥其应有的作用,Linux系统管理员需要对磁盘阵列的容错性 能力进行分析。通常情况下,根据企业对待数据损失的不同 ,每个一个季度或者半年进行测试一次。以保障磁盘阵列能 够正常工作。磁盘阵列5是现在使用最普遍的磁盘阵列方式。 在磁盘阵列5这个磁盘阵列模式中,数据平均分布在每个硬盘 中。所以即使某个硬盘损坏了,仍然可以凭借其他硬盘上的 内容恢复损坏硬盘中的数据。不过, 当有两个以上硬盘同时 出现故障时,那么硬盘中的数据将无法修复。 一、测试磁盘 阵列是否在起作用。 有时候要测试磁盘阵列是否在起作用年 ,要对磁盘阵列进行"破坏性"测试。这里的破坏性测试笔 者是打上了引号的,不是真的去损坏硬盘。为了测试磁盘阵 列5是否有硬盘损坏的情况,需要先把服务器关掉。然后把其 中一块硬盘的线拔掉,让系统找不到这块硬盘。如此的话系 统就会认为这块硬盘损坏了。会尝试使用其他硬盘中的数据 来恢复损害的硬盘中的内容。重新启动Linux系统后,由于只 是去掉了一块硬盘,故系统仍然可以启动磁盘阵列5。而且 采用了磁盘阵列之后,数据会自动恢复。即少了一块硬盘之 后,一切仍然可以正常运行。通过查看磁盘阵列的状态记录 文件,可以查看相关的信息。在Linux系统下,磁盘阵列状态 文件保存在/proc/mdstat下。在这个状态文件中,可以看出当 前磁盘阵列中启用了几块硬盘,会指明当前硬盘的序号。虽 然说同时损坏两块以上硬盘就无法恢复数据,但是,这种情

况毕竟还是少数。同时损坏2个硬盘的几率并不是很高。故磁 盘阵列5在安全性上还是有比较高的利用价值。 在Linux下部 署磁盘阵列5的时候,还有一个好处。就是即使有两块硬盘损 害了,虽然不能够修复数据,但是仍然可以启动Linux操作系 统。当两块以上硬盘损坏时,重新启动之后,系统会发出警 告信息。此时管理员可以利用ROOT帐号进行登陆。然后更 改配置文件/ETC/RAIDTAB的文件名字再重新启动,就可以 顺利登陆到Linux系统中。不过可惜的是,此时硬盘上的数据 将无法恢复。二、通过配用硬盘提高磁盘阵列5的安全性。 由于2个硬盘以上的损坏将无法恢复数据。所以Linux系统管 理员就会考虑,能否在Linux系统中再挂载一个备用硬盘。平 时的时候这块硬盘不会包含到磁盘阵列5中。当磁盘阵列中某 块硬盘出现损坏时,就利用这块备用硬盘替补。如此的话, 即使管理员暂时没有发现损坏的硬盘,对企业的影响也不会 很大。大部分的磁盘阵列技术都支持采用备用硬盘。当某个 硬盘工作不正常时,磁盘阵列会立刻启动备用硬盘。并通过 一定的容错技术,将数据恢复到正常状态。但是并不是所有 的磁盘阵列技术都支持这个备用硬盘。笔者在上篇文章中介 绍过几个常用的磁盘阵列方式。其中就提到过Linear模式。由 于这种模式并不会分散存储数据,而是一块硬盘存储空间满 了以后再存储到另一块硬盘中,故并没有容错机制。此时备 用硬盘也就不会起作用。不过在磁盘阵列5模式下,其是分 散存储数据的,具有很高的容错性。所以此时若配置一块额 外的备用硬盘,能够让磁盘阵列的安全性更上一层楼。另外 这里需要注意的是,当操作系统启动的时候,备用硬盘也会 随之启动。只是平时的数据不会存储到这一块硬盘中。而只

有当某一个硬盘损坏时,才会这块备用硬盘中存入数据。如 果系统管理员需要在已有的磁盘阵列中加入备用硬盘的话, 则需要修改磁盘阵列的配置文件/etc/raidtab。其实这个更改也 很简单。通常情况下只需要向这个配置文件中加入两条语句 即可。第一条语句:nr-spare-disk 1。这条语句主要用来说明 这个硬盘是备用硬盘。除非其他硬盘损坏了否则的话磁盘阵 列不会往这个硬盘中存入数据。 第二条语句: device /dev/had 。这一条语句用来指定备用硬盘的分区名称。我们知道 , Linux系统跟微软操作系统下的磁盘阵列技术有一个很大的 不同。在微软操作系统下,它是以硬盘为单位的。但是 在Linux操作系统下,则是以分区为单位的。故在Linux操作系 统中,即使只有一块硬盘也可以实现磁盘阵列5技术,只是不 能够实现相关的功能而以。所以,这里除了要指明硬盘外, 还需要指明硬盘分区的名字。 另外还有一个注意事项。有 些Linux管理员可能担心多个硬盘会同时损坏。所以他们会为 磁盘阵列5配置多个备用硬盘。此时如果硬盘有损坏的话,系 统就会考虑需要首先采用哪块硬盘。此时可以利用spare-disk 语句来指定首先采用哪块硬盘。如果编号设置为0,就表示这 块备用硬盘是此磁盘阵列所使用的第一顺序备用硬盘。其他 的配置跟磁盘阵列的常规配置相同,这里就不做重复介绍了 。 三、注意磁盘阵列空间的使用率。 磁盘空间的容量是不是 几块硬盘容量的总合呢?其实不是。如在磁盘阵列5磁盘阵列 中,跟普通硬盘存储数据不同,磁盘阵列技术会自动产生一 个同位校验码。这个同位校验码主要用来解决硬盘损坏时数 据恢复问题。这里要特别注意,磁盘阵列5并不会特别保留固 定的一个硬盘来保存同位校验码,而是将同为校验码分散存

储在所有的硬盘当中。所以这种方式并不会因为保存同位校 验码在同一个硬盘上而造成整体系统性能的瓶颈。 但是,虽 然磁盘阵列5 不会特别保留固定的一个硬盘来保存同位校验 码,但是他会使用一个硬盘的容量来保存同位校验码。这是 什么意思呢?也就是说,假设现在有四块硬盘组成了一个磁盘 阵列,其中每块硬盘的容量为120G。那么磁盘阵列5并不会 把全部的同位校验码都保存在同一块硬盘上。可是其会在这 四块硬盘上分别占用30G的空间,总共120G的容量。也就是 说,此时真正可以存储数据的数量为三块硬盘的容量, 即360G。对于这个容量,Linux管理员要有一个充分的认识。 特别是刚刚接触磁盘阵列的人会有疑问,明明没有这么多的 数据,为什么硬盘就这么快满了呢?难道有病毒吗?总之管理 员要记住,同位校验码需要占用一个硬盘的容量。不过其并 不是单独保存在一个硬盘中,而是在各个硬盘上都获取一定 的空间。 另外需要注意,同位校验码不仅需要牺牲磁盘的容 量,而且还会对硬盘的读写性能有不利的影响。读写数据时 , 磁盘阵列会将一个文件切割成一个个小块, 再以小的区块 为单位同时向硬盘中读取数据。所以磁盘阵列可以提高硬盘 的输入输出效率。从理论上讲,如果有5个硬盘组成磁盘阵列 , 磁盘陈列会同时从4个硬盘中读写数据。故存取速率可以提 高4倍。但是实际工作过程中,由于多处来了一个同位校验码 。这个同位校验码的生成、保存也需要牺牲一定的系统资源 , 故最终的效率并不会达到这么高。不过从这里也可以说明 一件事情,就是硬盘数量越多,其硬盘数据读取效率里会越 高。 故架设磁盘阵列5时需要耗费比较多的CPU、内存等硬 件资源。如果这些硬件资源跟不上的话,磁盘阵列不但不能

够起到其应有的作用,而且反而会增加Linux服务器的风险。 所以在磁盘阵列安全性分析时,也要考虑CPU、内存等硬件 资源能否支持磁盘阵列顺利运转。 100Test 下载频道开通,各 类考试题目直接下载。详细请访问 www.100test.com