C 编程指南学习(七)

文章作者 100test 发表时间 2008:01:04 13:01:24
来源 100Test.Com百考试题网


第7章 内存管理
欢迎进入内存这片雷区。伟大的Bill Gates 曾经失言:
640K ought to be enough for everybody
— Bill Gates 1981
程序员们经常编写内存管理程序,往往提心吊胆。如果不想触雷,唯一的解决办法就是发现所有潜伏的地雷并且排除它们,躲是躲不了的。本章的内容比一般教科书的要深入得多,读者需细心阅读,做到真正地通晓内存管理。
7.1内存分配方式
内存分配方式有三种:
(1) 从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。
(2) 在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
(3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或0delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。
7.2常见的内存错误及其对策
发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有发生任何问题,你一走,错误又发作了。
常见的内存错误及其对策如下:
u 内存分配未成功,却使用了它。
编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数的入口处用assert(p!=NULL)进行检查。如果是用malloc或new来申请内存,应该用if(p==NULL) 或if(p!=NULL)进行防错处理。
u 内存分配虽然成功,但是尚未初始化就引用它。
犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。
内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。
u 内存分配成功并且已经初始化,但操作越过了内存的边界。
例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。
u 忘记了释放内存,造成内存泄露。
含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。
动态内存的申请与释放必须配对,程序中malloc与free的使用次数一定要相同,否则肯定有错误(new/0delete同理)。
u 释放了内存却继续使用它。
有三种情况:
(1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。
(2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。
(3)使用free或0delete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。
l 【规则7-2-1】用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存。
l 【规则7-2-2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。
l 【规则7-2-3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。
l 【规则7-2-4】动态内存的申请与释放必须配对,防止内存泄漏。
l 【规则7-2-5】用free或0delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。
7.3指针与数组的对比
C /C程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的。
数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命期内保持不变,只有数组的内容可以改变。
指针可以随时指向任意类型的内存块,它的特征是“可变”,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。
下面以字符串为例比较指针与数组的特性。
7.3.1 修改内容
示例7-3-1中,字符数组a的容量是6个字符,其内容为hello\0。a的内容可以改变,如a[0]= ‘X’。指针p指向常量字符串“world”(位于静态存储区,内容为world\0),常量字符串的内容是不可以被修改的。从语法上看,编译器并不觉得语句p[0]= ‘X’有什么不妥,但是该语句企图修改常量字符串的内容而导致运行错误。
char a[] = “hello”.
a[0] = ‘X’.
cout 〈〈 a 〈〈 endl.
char *p = “world”. // 注意p指向常量字符串p[0] = ‘X’. // 编译器不能发现该错误
cout 〈〈 p 〈〈 endl.

示例7-3-1 修改数组和指针的内容
7.3.2 内容复制与比较
不能对数组名进行直接复制与比较。示例7-3-2中,若想把数组a的内容复制给数组b,不能用语句 b = a ,否则将产生编译错误。应该用标准库函数strcpy进行复制。同理,比较b和a的内容是否相同,不能用if(b==a) 来判断,应该用标准库函数strcmp进行比较。
语句p = a 并不能把a的内容复制指针p,而是把a的地址赋给了p。要想复制a的内容,可以先用库函数malloc为p申请一块容量为strlen(a) 1个字符的内存,再用strcpy进行字符串复制。同理,语句if(p==a) 比较的不是内容而是地址,应该用库函数strcmp来比较。
// 数组…
char a[] = "hello".
char b[10].
strcpy(b, a). // 不能用 b = a.
if(strcmp(b, a) == 0) // 不能用 if (b == a)


// 指针…
int len = strlen(a).
char *p = (char *)malloc(sizeof(char)*(len 1)).
strcpy(p,a). // 不要用 p = a.
if(strcmp(p, a) == 0) // 不要用 if (p == a)


示例7-3-2 数组和指针的内容复制与比较
7.3.3 计算内存容量
用运算符sizeof可以计算出数组的容量(字节数)。示例7-3-3(a)中,sizeof(a)的值是12(注意别忘了’\0’)。指针p指向a,但是sizeof(p)的值却是4。这是因为sizeof(p)得到的是一个指针变量的字节数,相当于sizeof(char*),而不是p所指的内存容量。C /C语言没有办法知道指针所指的内存容量,除非在申请内存时记住它。
注意当数组作为函数的参数进行传递时,该数组自动退化为同类型的指针。示例7-3-3(b)中,不论数组a的容量是多少,sizeof(a)始终等于sizeof(char *)。
char a[] = "hello world".
char *p = a.
cout〈〈 sizeof(a) 〈〈 endl. // 12字节
cout〈〈 sizeof(p) 〈〈 endl. // 4字节

示例7-3-3(a) 计算数组和指针的内存容量
void Func(char a[100])
{
cout〈〈 sizeof(a) 〈〈 endl. // 4字节而不是100字节
}

示例7-3-3(b) 数组退化为指针
7.4指针参数是如何传递内存的?
如果函数的参数是一个指针,不要指望用该指针去申请动态内存。示例7-4-1中,Test函数的语句GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么?
void GetMemory(char *p, int num)
{
p = (char *)malloc(sizeof(char) * num).
}

void Test(void)
{
char *str = NULL.
GetMemory(str, 100). // str 仍然为 NULL
strcpy(str, "hello"). // 运行错误
}

示例7-4-1 试图用指针参数申请动态内存
毛病出在函数GetMemory中。编译器总是要为函数的每个参数制作临时副本,指针参数p的副本是 _p,编译器使 _p = p。如果函数体内的程序修改了_p的内容,就导致参数p的内容作相应的修改。这就是指针可以用作输出参数的原因。在本例中,_p申请了新的内存,只是把_p所指的内存地址改变了,但是p丝毫未变。所以函数GetMemory并不能输出任何东西。事实上,每执行一次GetMemory就会泄露一块内存,因为没有用free释放内存。
如果非得要用指针参数去申请内存,那么应该改用“指向指针的指针”,见示例7-4-2。
void GetMemory2(char **p, int num)
{
*p = (char *)malloc(sizeof(char) * num).
}

void Test2(void)
{
char *str = NULL.
GetMemory2(&.str, 100). // 注意参数是 &.str,而不是str
strcpy(str, "hello").
cout〈〈 str 〈〈 endl.
free(str).
}

示例7-4-2用指向指针的指针申请动态内存
由于“指向指针的指针”这个概念不容易理解,我们可以用函数返回值来传递动态内存。这种方法更加简单,见示例7-4-3。
char *GetMemory3(int num)
{
char *p = (char *)malloc(sizeof(char) * num).
return p.
}

void Test3(void)
{
char *str = NULL.
str = GetMemory3(100).
strcpy(str, "hello").
cout〈〈 str 〈〈 endl.
free(str).
}

示例7-4-3 用函数返回值来传递动态内存
用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把return语句用错了。这里强调不要用return语句返回指向“栈内存”的指针,因为该内存在函数结束时自动消亡,见示例7-4-4。char *GetString(void)
{
char p[] = "hello world".
return p. // 编译器将提出警告
}

void Test4(void)
{
char *str = NULL.

相关文章


使用双缓冲技术绘制曲线图
用C Builder对图像进行特殊效果处理
FAQ:用代码定义字段AllowZeroLength和Required属性
怎样在表中插入、删除和移动字段
C 编程指南学习(七)
C 编程指南学习(六)
C 编程指南学习(四)
C 编程指南学习(五)
vc6.0工具使用的几个技巧
澳大利亚华人论坛
考好网
日本华人论坛
华人移民留学论坛
英国华人论坛