多层钢筋混凝土框架结构抗震设计的自振周期折减系数探讨结构工程师考试

文章作者 100test 发表时间 2009:01:16 22:27:46
来源 100Test.Com百考试题网


由于计算模型的简化和非结构因素的作用,导致多层钢筋混凝土框架结构在弹性阶段的计算自振周期(下简称“计算周期”)比真实自振周期(下简称“自振周期”)偏长。因此,无论是采用理论公式计算还是经验公式计算;无论是简化手算还是采用计算机程序计算,结构的计算周期值都应根据具体情况采用自振周期折减系数(下简称“折减系数”)加以修正,经修正后的计算周期即为设计采用的实际周期(下简称“设计周期”),设计周期=计算周期×折减系数。如果折减系数取值不恰当,往往使结构设计不合理,或造成浪费、或甚至产生安全隐患。诚然,折减系数是钢筋混凝土框架结设计所需要解决的一个重要问题。
影响自振周期因素是诸多方面的,加之多层钢筋混凝土框架结构实际工程的复杂性,抗震规范[1]没有、也不可能对折减系数给出一个确切的数值。许多文献中给出,当主要考虑填充墙的刚度影响时,折减系数可取0.6~0.7[4] [7];根据填充墙的多少、填充墙开洞情况,其对结构自振周期影响的不同,可取0.50~0.90[2].这些都是以粘土实心砖为填充墙的经验值,不言而喻,采用不同填充墙体材料的折减系数是不相同的。当采用轻质材料或空心砖作填充墙,当然不应该套用实心砖为填充墙的折减系数。对于粘土实心砖外的其它墙体可根据具体情况确定折减系数[4].
通过笔者的粗浅分析和工程实践摸索,指出影响自振周期的一些主要因素,并对折减系数的取值提出建议,供结构工程师参考。
计算周期与自振周期存在差异的诸多因素
结构计算分析总是要进行简化的,简化程度取决于当时的计算工具;简化是有条件的,而关键是简化模型尽可能符合真实受力模型。多层钢筋混凝土框架结构的计算周期往往与其自振周期有较大出入,笔者认为,此偏差主要来自计算模型的简化,没有计入那些难于准确计算的因素造成的。一分为二的说,没有计入的那些因素,常常使计算周期比自振周期长,在一定条件下也会使计算周期比自振周期短,主要表现为以下几方面:
(一)造成计算周期比自振周期长的诸多原因
1. 填充墙的刚度影响
大多数多层钢筋混凝土框架结构的设计计算中,并没有计算填充墙、装修(饰)材料、支撑、设备等非结构构件的刚度。实际工程中,由于未考虑砖填充墙的刚度常常使计算周期比实测自振周期(下简称“实测周期”)大很多[7].填充墙的影响与填充墙的材料性能、数量、单片墙体长度、墙体完整性(开洞情况)、与框架的连接情况息息相关。定性地说,填充墙的数量多、单片墙体长度大、墙体开洞少且小、与框架连接好,它对框架结构的刚度增加大,反之就小。
我国的框架填充墙的发展趋势是,逐步取消粘土砖(保护粘土资源、能源、环境等的要求),采用多样化轻质填充砌体、轻墙板取而代之。采用不同材料的填充墙,由于填充墙材料的刚度、变形性能、延性的不同,其对结构的空间刚度影响显然不相同。在其它条件相同时,采用轻质填充墙比粘土砖填充墙对结构的刚度影响小。
一般框架结构都要有填充墙,当砖填充墙多,可能会成为影响结构自振周期的主要的直接因素。
2. 基坑回填土及混凝土刚性地坪对底层框架柱的侧限作用
通常,在计算模型中,多层钢筋混凝土框架结构的底层柱高(计算高度),一般取基顶至一层楼盖顶之间的距离,见下图1.由于基顶至室内、外之间回填土必须严格夯实。例如压实填土地基要求回填土的压实系数不应小于0.94[3].而且,通常在室内都要作混凝土刚性地坪。填土及地坪对结构侧移的约束,完全可以改变底层柱的计算高度,增大了结构刚度。为考虑填土及地坪影响,加强了底层柱根及其在刚性地坪部位的构造措施[1].
当基础埋深大,填土密实,混凝土地坪刚度大时,也是造成计算周期比实测周期偏长的重要原因。
3. 现浇楼板对楼面梁的刚度影响
目前,常规的多层钢筋混凝土框架结构的分析计算,通常采用杆元结构模型,如PK采用平面杆元模型,TAT、TBSA等采用空间杆元模型。但是,客观上,现浇楼板形成了结构的刚度。在结构设计时参考了教科书及许多文献,采用简化方法考虑了现浇楼板对楼面梁的刚度增大系数。比如,边框架梁取1.5倍,中框架梁取2.0倍[4].但是,这并不足以反应现浇楼板作为梁的有效翼缘对线形杆元模型梁的惯性矩真实增大了多少,在弹性阶段,此增大系数完全可能大于2.0[5].准确计算是无法做到的,也只能经验考虑。若增大系数值取小了,计算所得的结构刚度偏小,即计算周期偏长。现浇楼板对楼面梁的刚度增大系数取值,也直接影响着结构的计算周期。
4. 计算荷载高估了结构真实质量
一般情况下,计算荷载不同程度地高估了结构的真实质量(或简化的振动质点质量)。对于恒荷载构成的质量,在正常设计情况下,计算值必然大于实际值;对于活荷载构成的简化质点质量,比如楼面等效均布荷载按50%考虑[1],出现这样满载布置情况也是不太可能的。因此,所得简化质点质量之和往往大于真实结构质量,数值计算所得的周期自然偏大。
5.结构构件的超强性
首先,对材料强度具有95%保证率的可靠度要求[8],材料(如混凝土、钢筋等)存在超强因素;其次,设计和施工都要求结构构件的实际强度(如指标E)、尺寸(如指标I)不得低于设计标准。再者,混凝土的强度和其他性能指标的标准,一般取龄期t=28天来标定,而一般情况下混凝土的抗压强度是随龄期单调增长的,其增长速度渐减并趋向收敛。如,规范CEB-FIP MC 90中,混凝土的抗压强度及弹性模量随龄期增长的计算式分别为:fC(t)= fC ;EC(t)= EC 式中 =e .当然,正常情况下,结构的实际刚度也就大于设计计算刚度。

相关文章


受弯构件有哪两种主要破坏形态结构工程师考试
多层与高层建筑结构概念设计结构工程师考试
砼框架结构设计手算步骤结构工程师考试
混凝土结构施工图绘制方法结构工程师考试
多层钢筋混凝土框架结构抗震设计的自振周期折减系数探讨结构工程师考试
一级结构之静定结构的位移计算结构工程师考试
澳大利亚华人论坛
考好网
日本华人论坛
华人移民留学论坛
英国华人论坛